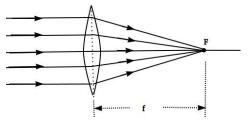
Convex Lens

Aim:

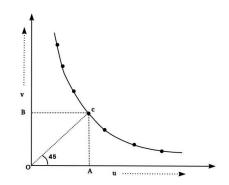

To find the focal length of a concave mirror by drawing a uv graph and to verify the result by normal reflection method

Apparatus: Convex lens, Screen, Illuminated wire Gauze, Stand, metre scale etc.

Principle:

1. The distance object method:

If the object is placed in **infinity**, the distance between the lens and the screen is the **focal length**



2. from u - v graph:

The focal length

$$f = \frac{OA + OB}{4}$$

where \mathbf{OA} and \mathbf{OB} are the coordinates at the point where $\mathbf{u} = \mathbf{v}$

Observations:

1. u - v method

	Object Distance (u) cm	Image Distance (v) cm
Trial No		
1		
2		
3		
4		
5		
6		

2. Distance Object Method:

$f_1 =$	cm	$f_2 =$	cm	f ₃ =	cm	Mean f =	cm =	m
1 -1	CIII	1-2	CIII	-3	CIII	1,164111	CIII	

Calculations:

From u – v graph:
$$f = \frac{OA + OB}{4}$$
 = cm = m

Results:

- 1. Focal length of the given Convex Lens from u-v graph =
 - = m m m
- 2. Focal length of the given Convex Lens from distant object method =